AN ADAPTATION OF A MARKOV CHAIN MODEL FOR ANTISUBMARINE WARFARE CARRIER AIRCRAFT

GEORGE MAURICE LANMAN

LIBRARY
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIF. 93940
mhta looument has been approved for publfo roloase and selo; ito distribution is unlimited.

$$
528
$$

-
 AN ADAPTATION OF A
 MARKOV CHAIN MODEL FOR

ANTISUBMARINE WARFARE CARRIER AIRCRAFT

by

George Maurice Lanman Lieutenant Commander, United States Navy B. S., United States Naval Academy, 1957

Submitted in partial fulfillment for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

> from the

UNITED STATES NAVAL POSTGRADUATE SCHOOL

It is the purpose of this paper to develop a useful mathematical model of ASW aircraft availability. The increasing emphasis of systems studies dictates the use of accurate and representative models of the ASW systems. At present, many studies are using essentially the same models developed during World War II. This paper is an attempt to make use of advanced theory in a more powerful and flexible model and to make the use of the model practical and verifiable.

The writer adapted the time homogeneous bivariate model as developed by F. C. Collins. This is a discrete time Markov process with a stochastic matrix of transition probabilities wherein the maintenance process is modeled as a pulsed input multiple server queue.

The model was programmed in FORTRAN 63 on the CDC 1604 and then modified to allow for variability. in the input parameters. Other modifications include an increase in the size of the model to accommodate a 16-aircraft squadron, the largest $A S W$ squadron at present, and an explicit form solution to the maintenance queueing equations.

TABLE OF CONTENTS

Section Page

1. Introduction 11
2. Assumptions 16
3. Model Description
3.1 The Theory 19
3.2 The Model 21
4. Development of the Transition Matrix 24
5. Summary 29
6. Bibliography 33
Appendix I Explicit Solutions to the Maintenance Queueing Equations 34
Appendix II The Logical Flow Diagram of the Computer Program 39
Appendix III The Computer Program 41
Appendix IV Sample Results 52
\qquad $=$
$=-$
$2=-$ \qquad

-

-xill

+10

4ther

LIST OF ILLUSTRATIONS

Figure

1. Block diagram of transition probabilities within the unit cycle
2. Program assembly and computation time for one transition matrix as a function of the total number of aircraft32

TABLE OF SYMBOLS

Symbol

Definition or Meaning
a/c
λ
λ_{A}
S

E
$p_{i j}(n, n+1)$
$X_{1}(t)$
$X_{2}(t)$
$A(t)$
$N(t)$

T
$Q\left(t_{0}\right)$
$P(t)$
mean repair rate of aircraft
aircraft
mean accident rate
the set of all possible outcomes; the probability description space
possible outcome(s) or event(s)
a conditional probability that at time $n+1$ the outcome or state is j given that at time n the state is i
the number of a/c flying at time t, which did not fly the previous cycle
the number of a / c in the maintenance queue at time t
the number of a / c desired on station at time t the total number of a/c of type considered at time t
the time interval from the launch to recovery at the start of the cycle
the probability distribution over all possible states at initial time t_{o}
the matrix of transition probabilities at time t
${ }^{p}(\alpha, i)(\beta, j)$
$\gamma_{\text {fgh }}$
p_{Y}
p
$\Pi_{\alpha}(\mathrm{m})$

D
$p_{i j}(t)$
the elements of the P matrix; the probability that $X_{1}=\beta$ and $X_{2}=j$ at the end of a cycle, given that $X_{1}=\alpha$ and $X_{2}=\mathrm{i}$ at the start of the cycle
the probability given f ready a/c, g are launched, and h enter maintenance
probability of entering maintenance just before, during, or immediately after launch
the probability of equipment failure during flight requiring maintenance when recovered by the carrier
the probability that of α a/c flying m will enter maintenance upon recovery
the number of independent identical maintenance repair stations or "spots"
the probability that $i-j a / c$ are repaired in time interval t

1. INTRODUCTION

The threat to freedom of the seas posed by the vast Soviet submarine fleet is perhaps the most thorny problem facing the U. S. Navy today. Two world wars have produced Pyrrhic victories over limited submarine fleets. During the Second World War operations analysis was born into the Navy to aid in the defeat of the German submarine. The classic antisubmarine warfare (ASW) analyses and models developed by Morse [2] and Koopmans [3] are still being used today, over two decades later, in most of the ASW study efforts for the Navy.

These early ASW analyses assumed a given level of search effort available and directly evaluated the probability that an ASW subsystem could detect and/or kill a submarine. This assumption is not only logical to make the problem tractable, but also practical since no immediate changes in ASW force levels could be expected. Moreover, the studies were conducted during the war, not before it started. It is the purpose of this paper to present a probabilistic model to describe the available effort. Such a model can be used to sharpen the estimates of the effectiveness of an ASW subsystem and to study the characteristics of the associated support system.

Naturally, the current study plays an important but limited role in the overall problem of designing an entire ASW system. The difficulties involved in such a specification are legion. First and foremost
is the quantification of the ASW mission in denying the enemy the effective use of his submarines. Currently, the probability of detecting and/or killing submarines is used as the measure of effectiveness of the mission, and it appears that a more encompassing one has not been developed. Second, the specification of an ASW force level to counter a given threat has many inherent subjective elements. These are due to the existing historical bias in predicting the conduct of a future ASW war with an enemy, particularly one who has never before used a large submarine force in its military operations. The reader can imagine why merely defining terms such as "threat" and "effective counter" becomes quite difficult.

Thus, there is a need to investigate the levels of search effort specified. This may require acceptable models to measure the availability of effort, its effectiveness, and determine the logistic support required for any level of available effort. Specifically, the ASW subsystem to be modeled is the carrier-based aircraft, although the model is adaptable to other systems.

The method of investigating the demand for ASW carrier a/c will assume that the desired number of a/c on station is known as an input parameter. The support required to achieve this measure of available effort depends upon maintenance space, manpower, and supply. Generally, we shall consider how an ASW carrier supports this number of a/c on station with the present or proposed number of a/c embarked
on the carrier. The parametric input can be subjected to sensitivity analyses.

The operational commander of the ASW force launches the desired number of a/c on station to screen, search, or actively prosecute a submarine contact. Each a/c is relieved on station. Each such relief requires the launching of another a/c prior to the recovery of the initial a/c. The returning a/c must receive varying degrees of maintenance and requires refueling and rearming. This cycle continues until the mission is completed. Loss of a/c due to accidents, insufficient supply, and lack of repair capability cause deviations in this procedure. Naval operations involve the interaction of many quantities which are random in nature. Not all can be considered in a tractable mathematical model. Some quantities which are important are omitted. One example is the length of each cycle time, which is assumed to be a constant value. Including variables of this nature incurs unnecessary mathematical complication. It is hoped that adequacy of the model can be measured by using fleet data available from the Fleet ASW Data Analysis Program (FADAP).

Collins [5] describes a bivariate Markov model for airborne early warning (AEW) and combat air patrol (CAP) jet a/c operating in an attack carrier force. This model is used to evaluate the probability of maintaining a fixed requirement of a / c on station as a measure of ef fectiveness of the system. It has subsequently been used in a larger
attack force study for the Navy. The model computes the probabilities of the number of a/c on station and in or awaiting maintenance at any given launch period. The comparable ASW problem differs in the following aspects:

1. Type, range, and speed of a/c;
2. The variable number of a / c required for mission;
3. Attrition due to accidents and supply failures;
4. The greater number of ASW a/c.

It was decided to use the Collins' model with appropriate modification. For immediate reference, the mathematical content of the model will be repeated herein.

In order to incorporate these modifications, it was necessary to spend some time reprogramming on the CDC 1604 digital computer in FORTRAN 63, the CDC version of the IBM FORTRAN IV. The original program was not readily available and was written in an early assembler language. Moreover, the numerical analysis was not sufficiently sharp to handle the larger input values. Also, double precision (two computer words instead of one) arithmetic was required in one subroutine for an accurate explicit solution to the maintenance queueing equations (see Appendix I). This effected a 50% decrease in the computer time required for developing a matrix of transition probabilities.

Following this introduction, section 2 contains a brief description of the operational problems involved and the assumptions made. A brief
description of Markov chains and the mathematical model are presented in section 3. The details for computing the matrix of transition probabilities are given in section 4. General employment of the model follows. The appendices include the solution mentioned on the preceding page, a logical flow diagram of the program, a copy of the program, and some sample results.

2. ASSUMPTIONS

The real-world employment of carrier a/c is cyclic in nature, and the present state of any given a/c (i.e., flying, in or awaiting maintenance) depends largely on what the previous state was. This fact suggests that a Markovian assumption can logically be made for the a/c transition probabilities. In the search phase, a/c may or may not relieve on station; but, in any part of the contact investigation phase, relief on station will be made. To insure full screening and mission coverage, a/c will relieve on station.

The question of resupply during an operation depends primarily on the availability of carrier on-board delivery (COD). This depends on the geographical location and the mission (convoy protection, strikeforce protection, hunter-killer operation, etc.). In practice, resupply is not anticipated within a week's period, and around-the-clock oper ations have continued for two weeks without resupply.

Standard maintenance procedures aboard carriers preclude major maintenance on the flight deck. It will be assumed that sufficient notice is given so that all major 120 -hour checks will be completed prior to the operation. This assumption can be modified with an appropriate adjustment in the mean repair rate. The concept of maintenance crews assigned to hangar deck areas ("spots"), as developed by Collins [3], will be used. Each crew will be capable of all types of maintenance
and will operate independently at the identical mean repair rate λ. The number of spots is determined by the average number of such crews available to work continuously around the clock on a watch basis. The state of each a/c is assumed to be statistically independent of that of others, and the launching and landing transition probabilities will be developed on the basis of independent Bernoulli trials. The parameters can be determined using the maximum likelihood estimators. The range of the number of a/c desired on station at any given cycle will be set by the user. The number to be launched at any time is assumed equally likely within this range. This input parameter is a function of the estimated submarine density (i. e., expected contact rate). The lower limit will be set at the number of a/c desired on station in the search (screening) phase, and the upper limit is set at the maximum practicable number of a / c to be launched during a multiple-contact phase.

Briefly, the assumptions are:

1. a/c will be relieved on station.
2. Any desired length of operation can be set as an input.
3. Major 120 -hour checks will be completed prior to the operation.
4. No resupply to the carrier is available.
5. The launch-to-launch cycle for all ASW a/c is four hours.
6. Minor maintenance, refueling, and rearming only can be performed on the flight deck.
7. Each maintenance spot is characterized with an independent exponential repair time with mean repair rate of λ for around-the-clock operations.
8. The number of a/c lost due to attrition is a Poisson random variable for each cycle period with parameter $\lambda_{A}(a / c$ accident/flying hours for a/c type).
9. Any a/c lost by accident will not be returned to service due to either (a) physical loss at sea, or (b) insufficient maintenance capability aboard ship and lack of major parts.
10. The number of a/c launched for each cycle is uniformly distributed between the upper and lower limits determined by the user.

3. MODEL DESCRIPTION

3.1 The Theory

A stochastic or random process is a collection of random variables indexed on some set $T,(X(t), t \in T)$. In this case, time is the indexing set, and the Markovian assumption states that the future state of the process depends only on the state at the present time and not on its past history. Due to the cyclic nature of our problem, it is possible to increment time $(T=(0,1, \ldots))$ using the cycle time from launch to launch as the steps of unit time in a discrete Markov chain. It is assumed that the reader is familiar with the notion of a random variable as a function defined on a sample description space (S) on which the family of events or outcomes (E) of a probability function can be defined [4].

A discrete time Markov chain is described by a sequence of discrete valued random variables and is determined when the one-step transition probabilities of the state variables are specified, i.e., a conditional transition probability of a transition at time n for each pair of $i, j=0,1, \ldots, m$ (m being the number of states in the process) must be given.

$$
p_{i j}(n, n+1)=P[X(n+1)=j \mid X(n)=i]
$$

If the transition probability functions depend only on the time difference, we have time homogeneity

$$
p_{i j}(n+l, l)=p_{i j}(0,1)=p_{i j} .
$$

The initial state of the system must be given either as a specific state or randomly as a probability distribution function over the possible states.

The $p_{i j}$ (transition probabilities) are arranged in matrix form and satisfy:

1. $p_{i j} \geq 0$ for $i, j=0,1, \ldots, m$;
2. $\sum_{j=0}^{m} p_{i j}=1$, i.e., the rows of the transition matrix sum to 1 for all ifor the states within the description space [4].

3. 2 The Model

In order to establish the finite set of states (E) for the model, we shall consider two random variables defined as follows:
$X_{1}(t)=$ The number of a / c flying at time t not having flown in the previous launch-to-launch interval.
$X_{2}(t)=$ The number of a / c in or awaiting maintenance at timet.

Now, we will consider the vector $X(t)=\left[X_{1}(t), X_{2}(t)\right]$ as a pair of random variables and thereby have a bivariate stochastic process with the possible states ranging from $(0,0)$ to (A, N).

$$
\begin{aligned}
& 0 \leq X_{1}(t) \leq A=N o . \text { of a/c desired on station, and } \\
& 0 \leq X_{2}(t) \leq N=N o . \text { of a/c of given type aboard carrier. }
\end{aligned}
$$

We will define an operating cycle as an interval unit of time. Process observations of $X(t)$ will be made at successive unit interval launch times. To develop the $p_{i j}$ elements, consider a given time for launching until A aircraft are flying or until the supply of ready a/c is depleted. Those a/c failing the launch enter the maintenance state at this idealized point in time t (the total launching time required is much less than the total cycle time). At some time T, less than the launch-to-launch unit time interval, the a/c which were relieved on station return and land at the idealized point in time $t+T$. Some of these a/c will require maintenance and enter the maintenance queue. Those requiring only refueling and preflight inspection will enter a ready status to be tested for the next launch.

During the unit time interval, maintenance will be performed on those a / c in the not-ready status, and a certain number of aircraft will be repaired according to assumption 7 .

In summary, we start the system in some initial state (such as $(0,0)$ with no a/c flying or in maintenance) or start with a probability distribution $Q\left(t_{o}\right)$ over the states, E, at time t_{o}. We launch, recover, and repair a/c in the unit interval and repeat the process over each succeeding unit time interval until the end of the operating period. Knowing the transition probabilities within the unit time interval, we can develop the elements of the transition matrix, P, or $\{p(\alpha, i),(\beta, j)\}$. These are the probabilities of going from the state of α a/c flying and i a/c in maintenance to β a/c flying and $j a / c$ in maintenance over the unit time interval.

It was assumed in section 2 that A, the number of a / c to be launched, and N, the total number of a / c on board, are random variables, whereas they have been treated as constants so far in the development. To be analytically correct in including this feature, one should develop the appropriate quadrivariate process. Such a development leads to too large a state space and the author chose to include these effects by using a Monte Carlo simulation technique. That is, at the beginning of each cycle, a random mechanism is used to determine the values on A and N.

The probability of losing an a/c or changing the desired number to be launched is determined from the specified distributions at the beginning
of each unit interval, and the resulting P matrix containing the $\mathrm{p}_{(\alpha, i),(\beta, j)}$ is then recomputed. The probability distribution $\mathrm{Q}(\mathrm{t})$ over the states at any time t may be determined by the appropriate number of successive iterations of the Q vector times the P matrix, i.e.,

$$
Q(t)=P\left[X_{1}(t)=\beta, X_{2}(t)=j\right]=Q(t-1) x P
$$

The probability of maintaining α a/c on station over any given period of operation may be obtained at any unit time t (i. e., the beginning of the next cycle) by summing out the appropriate maintenance state probabilities. Thus, $P(\alpha$ a/c are flying at time $t)=$

$$
\operatorname{Pr}\left(X_{1}(t)=\alpha\right)=\sum_{i=0}^{N} \operatorname{Pr}\left(X_{1}(t)=\alpha, X_{2}(t)=i\right)
$$

A mathematical comment appears to be in order. In the case of fixed A and N, the states of the Markov chain are positive recurrent; and steady-state probabilities can be found for the entire state space. In the case of decreasing N due to a / c attrition, this is not true; and $(0,0)$ becomes an absorbing state as time (t) goes to infinity. This latter consideration is not a realistic one for the operational period envisioned. Therefore, it is mathematically more feasible to use the former chain in conjunction with the Monte Carlo technique.

4. DEVELOPMENT OF THE TRANSITION MATRIX

Perhaps the simplest way to view this development is to note the various transition probabilities incorporated in one-unit time cycle defined as follows:
(1) $\gamma_{\text {fgh }}=$ the launching transition probabilities at time t. This is the probability of taking f ready a / c, launching g successfully, and sending h into maintenance. Each a / c to be launched is considered a Bernoulli trial with probability of failure of p_{γ}, which is estimable and subject to sensitivity analysis. The values of $\gamma_{f g h}$ are:
a. 0 if $g>A$, since only A a/c are desired:
b. 0 if $g+h>f$; it is impossible to launch and send into maintenance more a/c than are available;
c. 0 if $g<A, g+h<f$; launching continues until A a/c are flying or until all f are used up;
d. $\binom{f}{g}\left(l-p_{\gamma}\right)^{g}\left(p_{\gamma}\right)^{f-g} \quad$ if $g<A, g+h=f, \quad$ standard binomial when all a/c in the ready state are used up but the A a/c are not launched;
e. $\binom{g+h-l}{h}(1-p)^{g}(p)^{h} \quad$ if $g=A, g+h>f$, standard negative binomial for g successes in $g+h-l$ trials.
(2) $\Pi_{\alpha}(m)=$ the landing transition probabilities which occur at time $t+T$. We must consider the probability that if there are a/c flying at time t then $m a / c$ will enter maintenance at recovery time $t+T$.
$\Pi_{\alpha}(m)$ will equal a standard binomial where $p=$ the probability of equipment failure in flight:

$$
\Pi_{\alpha}(m)=\binom{\alpha}{m}(1-p)^{\alpha-m}(p)^{m}, \quad m=0,1, \ldots, \alpha
$$

(3) $\mathrm{p}_{\mathrm{ij}}(\tau)=$ the maintenance transition probabilities, i. e., the probability of repairing $(i-j) a / c$ in time τ. Two maintenance periods occur: the first starting at time t and ending at time $t+T$, the second starting at time $t+T$ and ending at the end of the cycle, $(t+1)$. Under assumption 7 , the pulsed input, multiple exponential server queue is developed with D maintenance "spots" or servers each with identical, independent service rates, λ. For each server, then, the probability of remaining occupied (given the server is busy) in time $\tau=e^{-\lambda \tau}$. The probability of becoming free (i.e., repairing an $a / c)=1-e^{-\lambda \tau}$. The resulting queueing equations are:
A. $\quad d P_{i, n}(t) / d t=-n \lambda P_{i, n}(t)+(n+1) \lambda P_{i, n+1}(t)$ for $0 \leq n<D$;
B. $\quad d P_{i, n}(t) / d t=-D \lambda P_{i, n}(t)+D \lambda P_{i, n+1}(t) \quad$ for $n \geq D$.

Three ranges of i (initial queue state), j (final queue state), and D become significant:
a. When $j \leq i \leq D$, then not all spots are busy since there are fewer a / c in maintenance than spots. Each spot works independently; therefore, the solution to A is the binomial:

$$
p_{i j}(t)=\binom{i}{j}\left(1-e^{-\lambda t}\right)^{(i-j)} e^{-\lambda t j}
$$

b. When $D \leq j \leq i$, then all spots are occupied throughout the total service time, and the closed form solution to B is the Poisson:

$$
p_{i j}(t)=\frac{(D \lambda t)^{(i-j)} e^{-D \lambda t}}{(i-j)!}
$$

c. When $j<D<i$, then all spots are busy at the beginning of the service period, and some spots become idle during the service period. The explicit form solution of equation A is found using moment generating function transformation:

$$
\begin{aligned}
p_{i j}(t)= & \sum_{n=j}^{D-1}\binom{n}{j}\binom{D}{n}\left\{\left(\frac{D}{D-n}\right)^{(i-D)} e^{-\lambda t n}\right. \\
& \left.-e^{-\lambda t} \sum_{k=0}\left(\frac{\lambda D t}{k!}\right)^{k}\left(\frac{D}{D-n}\right)^{i-D-k}\right\} .
\end{aligned}
$$

(The derivation of this solution is discussed in Appendix I.)

The figure on the following page will show the relationships of these transition probabilities within the unit time interval.

TRANSITION PROBABILITIES WITHIN THE UNIT CYCLE

FIGURE 1

In order to develop each transition probability over the total unit time interval, we must consider all events taking place within the interval. Thus, to obtain the probability of going from $\alpha \mathrm{a} / \mathrm{c}$ flying and i a/c in maintenance to β a/c flying and $j a / c$ in maintenance, we start at the state (α, i) at time t. At this time, a/c are launched and some $1 \mathrm{a} / \mathrm{c}$ failing the launch enter maintenance. These $i+1$ in maintenance are then serviced until time $t+T$ when some $k a / c$ are still in the maintenance state. At time $t+T$, of the α a/c previously flying, some m enter maintenance and $(\alpha-m)$ enter the ready pool. Maintenance is continued on the $(k+m) a / c$ for the remainder of the cycle (1-T), until the end of the unit time interval when j a/c remain in the maintenance state. In functional form:

$$
\begin{aligned}
p_{(\alpha, i),(\beta, j)}= & \sum_{1=0}^{N-\alpha-i} \sum_{k=0}^{i+1} \sum_{m=0}^{\alpha} \gamma_{N-\alpha-i, \beta, l} \\
& \cdot p_{i+1, k}(T) \cdot \Pi_{\alpha}(m) \cdot p_{k+m, j}(1-T)
\end{aligned}
$$

5. SUMMARY

Representative values for the mean repair rate and the landing and launching failure rates produced results in agreement with the sensitivity analysis by Collins on these parameters in [5]. For failure probabilities less than. 5, and mean repair rate less than 12 hours, the effect of reducing the available maintenance time to 80% of the cycle time was negligible. Optimal loading and cycling policies can be determined for known values of these rates.

The model affords the following checks: (1) the rows of each P matrix are summed as they are computed by the program; and (2) the probability distribution vector ($Q \mathrm{~J}$) is summed over the states. Each summation was within 10^{-8} of one in the computer model.

The user may substitute any available distribution over the interval of a/c desired on station. In order to keep A fixed, enter the desired value as both upper and lower limit ($\mathrm{A}=\mathrm{ALOLIM}=\mathrm{LUPLIM})$. For fixed N, use a very small value for ALAM (such as 10^{-8}). Subroutine KRAN is a uniform generator, using the half open interval (lower limit +1 , upper limit +2) and a starting number as inputs. KRAN outputs an integer in this interval. Subroutine DRAW was used to provide some intuitive grasp of the results. DRAW was used in binary card form and is not essential to the main program. (The indicated associated statements must be removed, however.)

The results of reasonable arbitrary parameter values, based on the author's experience, have shown that most of the probábilities concentrate over a few states. Moreover, computation time increases rapidly as a function of N (no. of a / c), see Figure 2. This would indicate that a simple approximation to the model could be developed. One method presently being investigated to reduce computation time is to shrink the probability state space to include only those significant states and, thus, reduce the size of the transition matrix. Alternatively, the eigenvector, eigenvalue representation of the P matrix, might be used.

Originally, it was hoped to utilize the data from the Fleet ASW Data Analysis Program (FADAP) to attempt a verification of the model with its real-world counterpart. The only method available at present for obtaining the necessary data is by direct observation or a program of data collection, as suggested by Collins [5].

Many fruitful areas of investigation exist:
(1) Attrition has been simply modeled by the Poisson method. The two components of attrition, accidents and supply shortage, can be more accurately modeled and used to develop logistic schedules for maintenance and supply. One simple technique is to assume each component is independent and Poisson, and estimate a supply failure rate for $A O C P$ attrition from past data. With these assumptions, the total attrition is Poisson, with the parameter equal to the sum of the accident and supply failure rates.
(2) The model can be modified to make the number of maintenance spots available for any cycle a variable function of time, $D(t)$.
(3) An investigation of the Markovian assumption validity as the cycle times become smaller and smaller.
(4) Development of a continuous time model.
(5) Modification of the model to simulate resupply by COD.
(6) A study of the distribution of submarine contacts to determine the validity of the uniform a/c demand assumption.

- PROGRAM ASSEMBLY AND COMPUTATION TIME FOR ONE TRANSITION MATRIX (P) AS A FUNCTION OF THE TOTAL NUMBER OF AIRCRAFT (N)

1. Feller, W. An Introduction to Probability Theory and Its Applications, Vol. I (2nd ed.), John Wiley \& Sons, Inc., 1960.
2. Morse, P. M. and G. E. Kimball. Methods of Operations Research, John Wiley \& Sons, Inc., and The Technology Press of Massachusetts Institute of Technology, 1951.
3. Koopmans, B. O. U. S. National Defense Research Committee, A Theoretical Basis for Methods of Search and Screening, 1946.
4. Parzen, E. Stochastic Processes, Holden-Day, Inc., 1962.
5. Collins, F. C. "A Mathematical Model of Carrier Operations in Anti-Air Warfare'", Master's Thesis, United States Naval Postgraduate School, Monterey, California, May, 1961.

APPENDIX I

EXPLICIT SOLUTIONS OF THE
 MAINTENANCE QUEUEING EQUATIONS

The queueing equations for the pulsed input queue are essentially the pure death process given in [1] and [4] as problems and developed by Collins in [5]. The equations are:
A. $\frac{d P_{i, n}(t)}{d t}=-n \lambda P_{i, n}(t)+(n+1) \lambda P_{i, n+1}(t)$ for $0<n<D$
B. $\frac{d P_{i, n}(t)}{d t}=-n \lambda P_{i, n}(t)+D \lambda P_{i, n+1}(t) \quad$ for $n \geq D$
where $P_{i j}(0)=\Delta_{i j}$ and $P_{i j}(t)=0$ for $i<j$, since no input (arrivals) occur during the service time.

Equation B is solved directly in closed form:

$$
P_{i, n}(t)=\frac{(D \lambda t)(n-i) e^{-\lambda D t}}{(n-i)!}
$$

Now transforming the first equation (A) using the moment gener ating function (MGF),

$$
G(s, t)=\sum_{n=0}^{D-1} s^{n} P_{n}(t),
$$

as outlined in [4] (Chapter 7), and its partial derivatives:
(1)

$$
\frac{d G}{d t}=\sum_{n=0}^{D-1} s^{n} P_{n}^{\prime}(t)
$$

(2)

$$
\frac{d G}{d s}=\sum_{n=0}^{D-1} n s^{n-1} P_{n}(t)
$$

Where $P_{n}(t)$ denotes the conditional probability $P_{i, n}(t)$, by substituting (A) into (1), properly identifying the first summation with (2), and changing the second summation index to $r=n+l$, we get:

$$
\frac{d G}{d t}=-\lambda s \frac{d G}{d s}+\lambda \sum_{r=0}^{D} r s^{r-1} P_{r}(t), \quad \text { or }
$$

(3) $\frac{d G}{d t}=-\lambda(s-1) \frac{d G}{d s}+\lambda D s{ }^{D-1} P_{D}(t)$, since

$$
\sum_{r=0}^{D} r s^{r-1} P_{r}(t)=\frac{d G}{d s}+D s^{D-1} P_{D}(t)
$$

Next, replace the partial differential equation (3) with a system of ordinary differential equations using the Lagrangian auxiliary equations:

$$
\frac{d t}{l}=\frac{d s}{\lambda(s-1)}=-\frac{d z}{\lambda D s^{D-1} P_{D}(t)}
$$

The solution to the first equation (using the first two differentials) is:

$$
\lambda t=\ln (s-1)+C^{\prime}
$$

and hence

$$
s=C_{1} e^{\lambda t}+1
$$

or

$$
G_{1}=e^{-\lambda t}(s-1)
$$

The second equation is: (using first and third differentials)

$$
d z=-\lambda D\left(C_{1} e^{\lambda t}+1\right)^{D-1} P_{D}(t) d t
$$

Using the solution to (B) where $m=i-D$ to replace $P_{D}(t)$ and integrating, term wise, the binomial expansion of $\left(C_{1} e^{\lambda t}+1\right)^{D-1}$:

$$
z=\frac{(\lambda D)}{m!} \sum_{j=0}^{m+1}\binom{D-1}{j} C_{1}^{j} \int t^{m} e^{-\lambda(D-j) t} d t
$$

where the integral is evaluated as:

$$
-\sum_{k=0}^{m} \frac{t^{k} e^{-\lambda(D-j) t}}{(\lambda(D-j))^{m-k+1}} \frac{m!}{k!}+C_{2}
$$

Thus,

$$
C_{2}=z+e^{-\lambda D t} \sum_{j=0}^{D-1}\binom{D}{j}(s-1)^{j} \sum_{k=0}^{m} \frac{(\lambda D t)^{k}}{k!}\left(\frac{D}{D-j}\right)^{m-k}
$$

and the general solution is $\phi\left(C_{1}, C_{2}\right)$, where ϕ is an arbitrary function and

$$
C_{1}=u(s, t, z)
$$

and

$$
C_{2}=v(s, t, z)
$$

To get our particular solution, use the boundary conditions for $G(s, t)$:
(1) for $s=1$,

$$
\begin{aligned}
G(1, t) & =\sum_{n=0}^{D-1} P_{n}(t) \\
& =\operatorname{Pr}[\text { no. in maintenance at } t \text { is }<D \mid \text { i at } t=0] \\
G(1, t) & =1-\sum_{n=0}^{i-D} \frac{e^{-\lambda D t}(\lambda D t)^{n}}{n!}=1-\psi_{1}(t)
\end{aligned}
$$

where

$$
\begin{gathered}
u(1, t, z)=C_{1}=0 \\
v(1, t, z)=C_{2}=z+e^{-\lambda D t} \sum_{k=0}^{m} \frac{(\lambda D t)^{k}}{k!}
\end{gathered}
$$

so

$$
C_{2}=z+\psi_{1}(t)
$$

(2) for $t=0$,

$$
G(s, 0)=\sum_{n=0}^{D-1} s^{n} P_{n}(0)=0, \quad \text { since } i \geq n>D
$$

where

$$
\begin{gathered}
u(s, 0, z)=(s-1) \\
v(s, 0, z)=C_{2}=z+\sum_{j=0}^{D-1}\binom{D}{j}(s-1)^{j}\left(\frac{D}{D-j}\right)^{m}
\end{gathered}
$$

Thus,

$$
G(s, 0)=z+\sum_{j=0}^{D-1}\binom{D}{j} C^{j}\left(\frac{D}{D-j}\right)^{m}-C_{2}
$$

Substituting the general value for C_{2} above:

$$
\begin{aligned}
G(s, t)= & \phi(u, v)=\sum_{j=0}^{D-1}\binom{D}{j}(s-1)^{j} e^{-\lambda t j}\left(\frac{D}{D-j}\right)^{m} \\
& -\sum_{j=0}^{D-1}\binom{D}{j}(s-1)^{j} \sum_{k=0}^{m} \frac{(\lambda D t)^{k}}{k!} e^{-\lambda D t}\left(\frac{D}{D-j}\right)^{m-k} .
\end{aligned}
$$

Rearranging terms,

$$
\begin{aligned}
G(s, t)= & \sum_{n=0}^{D-1} s^{n} \sum_{j=n}^{D-1}\binom{j}{n}\binom{D}{j}(-1)^{j}\left[\left(\frac{D}{D-j}\right)^{m} e^{-\lambda t j}\right. \\
& \left.-e^{-\lambda D t} \sum_{k=0}^{m} \frac{(\lambda D t)^{k}}{k!}\left(\frac{D}{D-j}\right)^{m-k}\right]
\end{aligned}
$$

where $P_{n}(t)=$ the coefficient of $s{ }^{n}$.

THE IOCICAI TO OE DIAGRET OF THE CONUTER PRCGRAN

801) $\left.\rightarrow \operatorname{CONPTE} p_{(}, x\right)(, y)(t)=\operatorname{PR}(I, I B E T A, I Y)$
$(I=I X+(I A L P H-I) \times T O T A L A / C)$

APPENDIX III

THE COMPUTER PROGRAM

```
-COOP,,LANMAN,0/49/S/1S/2S/E/45=54,15,30000,5.
-BINARY,56.
IRELOCOM.
-FTN,E.
    PROGRAM MARKOVID = THE NO. AF THE FOLLOWING INPUTS ARE REQUIRED.NA = TOTAL NO. OF A/C TYPE ON BOARDTIME=TIME FROM LAUNCH TO RFCOVERY/LAUNCH TO LAUNCH CYCLE TIME(HRSIOOIFLAM=MEAN REPAIR TIME PER SPOT/LAUNCH TO LAUNCH CYCLE TIME (HRS)OO1PGAM = PROBABILITY OF A/C FAILING LAUNCH(M.L.EST. FROM PAST DATA)\(\begin{aligned} P= & \text { PROBABILITY OF A/C FAILURE DURING FLIGHT REQUIRING MAINTENANCE } 001! \\ & A T \text { LANDING (M.L. ESTIMATOR FROM PAST DATA) }\end{aligned}\)QI = THE PROBABILITY DISTRIBUTION VECTOR OVER ALL POSSIBLE STATES
            (7 X 17 = 119) SUCH THAT THE SUM OF ALL QI(I) = 1. THIS 001
            IS ESTIMATED BY THE USER AND INPUTTED BY USING A DATA STATEMENTOO1:
        ICYCLE = NO. CYCLES DESIRED FOR OPERATION
        JCYCLE = LAUNCH TO LAUNCH TIME(HRS)(TOT. TIME=ICYCLE X JCYCLE)
        ALAM = ACCIDENT RATE FOR TYPE A/C (ACCIDENT/HOURS)ALAM = ACCIDENT RATE FOR TYPE A/C (ACCIDENT/HOURS)
    ENTER DATA CARDS HERE
ENTER DATA CARDS HERE
    ID = 8
    FLAM=3.0
    PGAM=P=.4
    IYY = 13421773
    TIME = . }12
    ICYCLE=20
    JCYCLE=4
    ALOLIM=4.
    AUPLIM=6.
        END OF DATA CARDS
    AL=ALOLIM+1. $ AU=AUPLIM +2.
0032
    N=NA+1
    I AMAX=7
```

115 T1=-LOGF(.000000001 + RANF(-1))*2.30258/ALAM}004
IF(Tl-TFLC)130,131,132
130 T2=-LOGF(.000000001 + RANF(-1))*2.30258/ALAM
IF(T1+T2-TFLC) 230,231,131
230 T3=-LOGF(.000000001 + RANF(-1))*2.30258/ALAM
IF(T1+T2+T3-TFLC) 331,331,231
331 NEWN=NLAST-3 \$ GO TOl13
231 NEWN=NLAST-2 \$.GO TO113
1 3 2 NEWN=NLAST \$ GO TO113
131 NEWN=NLAST-1
113 PRINT 8882,IA,NEWN
IF(NEWN-IA) 15,13,13.
15 IA =NEWN
13 IF(IALAST) 11,12,11
1 2 CONTINUE 0056
FROM THIS NEXT STATEMENT TO NO. }483\mathrm{ IS CONCERNED ONLY WITH THE GRAPH OO57
DO 482 I=1,12
482 JT(I) = 8H
JT(1)=8HE(A/C)=
JT(3)=8HSPOTS =
JT(5)=8H T =
JT(7)=8HJ VS QJ
JT(8)=8HVECTOR
JT(9)=8H N =
JT(11)=8H\quadA =
DO 483 I = 1,119
FI=I
483 FJPLOT(I)=FI
IALAST=IA
DO 1235 I = 1,17
DO 1235 J=1, I AMAX
DO 1235 K=1,17
1235 GAMMA(I,J,K)=0.0
AT THIS PT THE LANDING TRANSITION PROBABILITIES ARE COMPUTED.
DO 300 I AA=1, I AMAX
DO 301 MI=1,I AMAX
IF(IAA-MI) 31,32,33
31 PRFMA(IAA,MI)=0.
GO TO 301
32 MMI=MI-1
PRFMA(IAA,MI) =P**MMI
GO TO 301
33 IAMI=I AA-1
MM1=MI-1
BC(1)=1.0
PROD=FLOATF(IAA-MI)
DO 50 IP=2,MI
AIP=FLOATF(IP-1)
PROD = PROD +1.0
0
PMIP 0090
50 BC(IP)=PROD*BC(IP-1)/AIP 0091
IGO=IAA-MI
0092
PRFMA(IAA,MI)=(BC(MI)*(1.0-P)**(IGO))*P**MM1
3a7 GRNFFNHE
300 CONTINUE
AT THIS PT THE MAINTENANCE TRANSITION PROBABILITIES ARE COMPUTED
DO 100 IT T=1,2
0059
0060
0 0 6 1
0061
0 0 6 2
0063
0 0 6 4
0 0 6 5
0 0 6 6
0 0 6 7
0068
0 0 6 9
0070
0071
0 0 7 2
0073
0 0 7 4
0075
0076
0 0 7 7
0078

```

113 PRINT 8882,IA,NEWN IF (NEWN-IA) 15,13,13.
15 I \(A=\) NEWN13 IF (IALAST) 11,12,110054

FROM THIS NEXT STATEMENT TO NO. 483 IS CONCERNED ONLY WITH THE GRAPH 0057\(32 \mathrm{MMI}=\mathrm{MI}-1\)0079
0080PRFMA(IAA,MI) \(=P * * M M I\)00810082
MM1 \(=\) MI-10083008400850086008700910092
```

 25 IF(IT-1)25,25,26
 25 TF(IT-1)25,25,26
 GO TO 28
 26 TAU = UNITT-TIME
 28 DO101 I=1,N
 DO 102 IJ =1,N
 IF (I-IJ) 14,199,I7
 199 IF(I-ID) 19,19,1999
 1999 PTRM(I,IJ,IT)=EXPF(-FLAM* TAU*D)
GO TO 102
14 PTRM(I,IJ,IT)=0.
GO TO 102
19 FJMI=FLOATF(IJ-1)
PTRM(I,IJ,IT)=EXPF(-FLAM*TAU*FJM1)
GO TO 102
17 IF(I-ID-1) 1,1,2
1 BC(1)=1.0
PROD=FLOATF(I-IJ)
DO 10 IP =2,IJ
AIP=FLOATF (IP-1)
PROD = PROD + 1.0
10 BC(IP) =PROD*BC(IP-1)/AIP
ELT=EXPF(-FLAM*TAU)
PTRM (I,IJ,IT)=BC(IJ)*(1.-ELT)**(I-IJ)*ELT**(IJ-1)
2 IF(IJ-1-ID) 22,24,24
22 CONTINUE
CALL PID(I,IJ,IT)
GO TO 102
24 D=FLOATF(ID)
ELDT=EXPF(-D*FLAM*TAU)
FACT = 1.0
A(1)=1.0
MM = I-IJ
DO 20 M=2,MM
FACT=FACT +1.0
20 A(M)=A(M-1)*FACT
201 PTRM(I,IJ,IT)=(D*FLAM*TAU)**(I-IJ)*ELDT/A(I-IJ)
102 CONTINUE
101 CONTINUE
100 CONTINUE
GO TO 12O
11 CONTINUE
IF(IA-IALAST) 120,121,120
121 IF(NEWN-NLAST)1111,117,111
117 IALPH=IALASTM1 \& GO TO 801
120 CONTINUE
AT THIS POINT THE LAUNCHING TRANSITION.PROBABILITIES ARE COMPUTED
IGM = XMINOF (IA,IFF)
DO 203 IG=1,IGM
IGMI=IG-1
BO zOz IH={:N
IHMI=I H-I
BPROD=((1.-PGAM)**IGMI)*(PGAM**IHM1)
86 IF(IG-IA) 91,87,84

```19 FJMI =FLOATF \((I J-1)\)011
```

GO TO 102

```17 IF (I-ID-1) 1,1,201
```

$1 B C(1)=1.0$

```01
```

```DO 10 IP \(=2\), I J01
```

ARPOLOATF(IP-1) 01 :

```01
```

BCO = PROD + 1.0
ELT=EXPF (-FLAM*TAU) 01 :
GO TO 102 011 012

```01 :
```

$24 \mathrm{D}=\mathrm{FLOATF}(I D)$
ELDT=EXPF(-D*FLAM*TAU)
FACT $=1.0$ 012

```012
```

22 CONTINUE
CALL PID(I,IJ,IT)
GO TO 102 012

```\(M M=I-I J\)DO \(20 \mathrm{M}=2\), MM012
```

```
    91 IF(IG+IHMI-IFF) 84,82,84 0154
    87 IF(IG+IHMI-IFF)85,85,84 0155
    84 GAMMA(IFF,IG,IH)=0. 0156
    GO TO 202
    82BC(1)=1.0 0158
    0157
    PROD=FLOATF(IFF-IG)
    DO 30 IP=2,IG
    AIP=FLOATF(IP-1)
    PROD = PROD + 1.0
    30 BC(TP)=PROD*BC(IP-1)/AIP*)
    I HMI = I H-1
    TEMP= PGAM**IHMI
    TEMPl=(1.-PGAM)**IGM1
        BPROD = TEMP*TEMP1
    GAMMA(IFF,IG,IH)=BC(IG)*BPROD
    GO TO 202
    85 FBC(1)=1.0
    PROD=FLOATF(IGM1-1)
    OO 40 I P=2,IH
    AIP = FLOATF(IP-1)
    PROD = PROD +1.0
    40 FBC(IP)=PROD*FBC(IP-1)/AIP
    GAMMA(IFF,IG,IH)=FBC(IH)*BPROD
202 CONT INUE
203 CONTINUE
204 CONTINUE
        REMOVE CARDS FROM HERE TO NO 999 IF PRINT OUT NOT DESIRED
    PRINT 9,(((I,IJ,IT,PTRM(I,IJ,IT),IT=1,2),IJ=1,N),I=1,N)
    0180
    9 FORMAT (1H1/(216H PTRM(12,1H,I2,1H,I2,3H)=E14,51))1,
    PRINT 90,((IFF,IG,IH,GAMMA(IFF,IG,IH),IFF=I,N),IG=I,IA):IH=I,N)
    9 9 ~ F O R M A T ( 1 H 1 / ( 2 ) 7 H ~ G A M M A ( I 2 , 1 H , I 2 , I H , I 2 , 3 H ) = E 1 4 . 5 ) ) ) ~ 0 1 8 4 ~
    PRINT 999,((IAA,MI,PRFMA(IAA,MI),IAA=1,IAMAX),MI=1,IAMAX)}018
999 FORMAT(1H1/(2(7H PRFMA(I2,1H,I2,3H)=E14.5)))}018
    NOW THF. TRANSITION MATRIX MUST BE ZEROED 0187
```



```
    DO 899 J=1,119 0189
    DO 899 K=1,7 0190
    DO 899 L=1,17 0191
899 PR(J,K,L)=0.0
    0192
    START COMPUT ING THE ELEMENTS OF EACH ROW, I=IX+ (ALPHA - I) X TOTAL A/C 0193
        DO 1000 IALPH=1, IALAST
    0194
801 CONTINUE
    DO 1100 IX=1,NLAST 0196
    0195
COMPUTE THE P ELEMENTS OF THE IAPH,IX.ROW AND SUM THE ROW 0197
    TSUM=0.
    I =IX+(IALPH-1)*N 0199
    DO 800 IBETA=1,IA }020
    RSUM=0.0 0201
    DO 900 IY=1,NEWN 0202
    PR(I,IBETA,IY)=0. 0203
    0203
    ILIM=NEWN-IALPH-IX+2 0204
    PSUM=0.0
    SUM=0.0
    SUML=0.0
    DO 500 IL=1,ILIM
    KLIM=IX+IL-1
0198
    0205
    SUM=0.0
    0207
    0208
    O209
```

```
            IXPIL = IX +IL - I
            SUMM=0.
            DO 600 MI=1,IALPH
            SUMK=0.
    -DO 700 IK=1,KLIM
            IKPMI = IK +MI-1
            IF(IXPIL-NEWN) 701,701,700
    701 IF(IKPMI-NEWN) 702,702,700
    702 GAMH=GAMMA(ILIM,IBETA,IL)
            PTRMHI = PTRM(IXPIL,IK,I)
            PRFMAH = PRFMA(IALPH,MI)
            PTRMH2 = PTRM(IKPMI,IY,2)
            SUM = GAMH * PTRMH1 * PRFMAH * PTRMH2
            SUMK = SUMK + SUM
            PSUM=PSUM+SUM
    700 CONTINUE
            SUMM = SUMM + SUMK
    6 0 0 ~ C O N T I N U E ~
            SUML = SUML + SUMM
            PSUM2 = SUML
    500 CONTINUE
            RSUM=RSUM+PSUM
            PR(I,IBETA,IY)=PSUM
    900 CONTINUE
            TSUM=TSUM+RSUM
    800 CONTINUE
        PRINT 888, TSUM,IALPH,IX
    888 FORMAT 1 7H TSUM = E15.8,2151
    1100 CONTINUE
    1000 CONTINUE
        REMOVE CARD FROM HERE TO 889 IF P MATRIX PRINT OUT NOT DESIRED
        DO 889 J=1,17
        DO 889 K=1,7
        D0889 L=1,17
        I=J+(K-1)*N
    89 PRINT 890,(PR(I,LP,L),LP=1,IAMAX),K,J,L
    890 FORMAT(7E14.5,2HJ=I2,5HK=1,A,2HL=I2)
        DO 898 I= 1,119
    898 QJ(I)=0.0
    NOW MULTIPLY QI AND P TO GET QJ
    805 PRINT 807,KT,IALAST,IA
    807 FORMAT (1H1,13HQ VECTOR CASE I 3/// I5,I5)
    DO 802 IBETA=1,7
    DO 902 IY=1,17
CAT THIS POINT CALCULATE THE (IBETA,IY)TH ELEMENT OF THE QJ VECTOR 0253
    J=IY+(IBETA-1)*N
    QP1=0.
    QP=0.
    DO 2001 IALPH=1,7 0257
    DO 2201 IX=1,17 0258
    I=IX+(IALPH-I)*N}0025
    QPI=QI(I)*PR(I,IBETA,IY)}026
    QP=QP+QPI
    2201 CONTINUE
    2001 CONTINUE
    QJ(J)=QP
PRINT 8882,IBETA,IY,J,QP ..... 0266
882 FORMAT (2I4,4H QJ(I3,3H )=E14.8) ..... 0267
907 CONTINUF ..... 0268
802 CONTINUE ..... 0269
CHECK THE SUM OF THE Q VECTOR ..... 0270
QSUM=0. ..... 0271
DO \(808 \mathrm{~J}=1,119\)0272
808 QSUM=QJ(J)+QSUM ..... 0273
PRINT 8883,QSUM ..... 0274
3883 FORMAT(6H QSUM \(=\) E15.9) ..... 0275
DO \(333 \mathrm{I}=18,119\) ..... 0276
\(K=(I-1) / 17\) ..... 0277
FK=FLOATF \((K)\) ..... 0278
FMEAN = FKKQJ(I)+FMEAN ..... 0279
333 CONTINUE ..... 0280
TFLC=FMEAN*FLOATF (JCYCLE) ..... 0281
PRINT 335,FMEAN ..... 0282
335 FORMAT 17 HMEAN A/C FLYING \(=\) E10.4) ..... 0283
STATEMENTS FROM THIS POINT TO THE CALL DRAW STATEMENT REFER TO GRAPH ..... 0284
JT(2) =ICODE(FMEAN)0285
\(J T(4)=I \operatorname{CODE}(D)\) ..... 0286
FKT=FLOATF \((K T)\)0287
\(J T(6)=I C O D E(F K T)\) ..... 0288
FN=FLOATF (NEWN-I) ..... 0289
\(J T(10)=I C O D E(F N)\)0290
FIAA=FLOATF(IA-I)0291
\(J T(12)=I C O D E(F I A A)\)0292
CALL DRAW(119,FJPLOT, QJ,0,0,4H \(, J T, 0,0,0,0,0, n, 8,8,0, L A S T\) ..... 0293
FMEAN \(=0\). ..... 0294
NEXT WE MUST MULTIPLY QJ AND P TO GFT QK AND SO ON...(QK+...N) ..... 0295
\(K T=K T+1\)0296
IF(KT-ICYCLE) 803,803,806 ..... 0297
803 DO \(804 \mathrm{I}=1,119\) ..... 0298
804 QI(I)=QJ(I) ..... 0299
IALASTMI = IALAST ..... 0300
IALAST=IA0301
NLAST=NEWN ..... 0302
GO TO 8090303
806 STOP 06
END0304SURROUTINF PID(I,J,IT)03050306
COMMON FLAM,TIME ..... 0307
COMMON PTRM, GAMMA COMMON PTRM,GAMMA,PR,PRFMA,ID ..... 0308
TYPE DOUBLE BC,RDC,PROD, DID3, DID4,DID5,DEXP ..... 0309
TYPE DOUBLE DAN,DIDI,DID2,SUM,DN,ANMI,FAC,COF,PSUM,PTR,FLAM,TAU,D ..... 0310
DIMENSION PTRM(17,17,2),BC(11),BDC(11) ..... 0311
DIMENSION GAMMA(17,7,17), PRFMA(7,7), PR(119,7,17) ..... 0312
\(D=F L O A T F(I D)\) ..... 0313
IDP \(1=1 D+1\) ..... 0314
IF(IT-1) \(25,25,26\) ..... 0315
25 TAU = TIME ..... 0316
GO TO 28 ..... 0317
26 TAU \(=1 .-\) TIME ..... 0318
28 CONTINUE ..... 0319
IMDPI=I-ID ..... 0320
\(P T R=0.0\) ..... 0321
```

 PSUM=0.
 DO 200 NJ = J, ID
 C DEVELOP N TAKEN J AT A TIME AND D TAKEN N AT A TIME
BC(1)=1.0
PROD=FLOATF(NJ-J)
DO 10 IP=2,J
AIP=FLOATF(IP-1)
PROD = PROD+1.0
10 BC(IP)=PROD* BC(IP-1)/AIP
BDC(1)=1.0
PROD=FLOATF(IDP1-NJ).
DO 20 IQ=2,NJ
AIQ=FLOATF(IQ-1)
PROD=PROD+1.0
20 BDC(IQ)=PROD*BDC(IQ-1)/AIQ
COF=BC(J)*BDC(NJ)*(-1)**(NJ-J)
ANM1=FLOATF(NJ-1)
DAN=D/(D-ANMI)
DID4=DEXP(-FLAM*TAU*ANMI)
DIDI=(DAN**(I-IDPI))*DID4
SLIM=0.
DN=O.
DO 201 K=1,IMDP1
FAC=1.
KMl=K-1
PROD=0.
DO 11 IK=1,KM1
PROD=PROD+1.
11FAC=FAC*PROD
IMIDK=I -ID-K
SUM=((FLAM*D*TAU)**KMI)*DAN**IMIDK / FAC
201 DN = DN +SUM
DID3=DEXP(-FLAM*D*TAU)
DID2=DN*DID3
DID5=DIDI-DID2
PSUM=COF*DID5
200 PTR =PTR +PSUM
103 CONTINUE
PTRM(I,J,IT)=PTR
102 CONTINUE
101 CONTINUE
END
FUNCTION KRAN(A,B,IY)
THIS ROUTINE RETURNS AN UNIFORMLY DISTRIBUTED RANDOM INTEGER
THIS ROUTINE RETURNS A INTEGER RANDOM NUMBER.GE. TO A
-LT. B
A = BOTTOM LIMIT (INCLUDED) FOR THE RANDOM NUMBER
B = TOP LIMIT (NOT INCLUDED) FOR THE RANDOM NUMBER
SET IY ONLY ONCE IN MAIN PROGRAM FOR EACH SET OF RANDOM NUMBERS O3
SOME GOOD STARTING VALUES FOR IY FOLLOW 03
13421773
33554433
8426219
42758321

```
56237485 ..... 0378
62104023 ..... 0379
ANY OF THESE MAY BE USED ..... 0380
THIS ROUTINE MAY BE USED IN FORTRAN 60 OR 63
THIS ROUTINE MAY BE USED IN FORTRAN 60 OR 6303810382
0383\(I Y=3125 * \dot{Y}\)
0384
\(I Y=I Y-(I Y / 67108864) * 67108864\) ..... 0385
\(F Y=I Y\) ..... 0386
\(K R A N=F Y / 67108864 . *(B-A)+A\) ..... 0387
RETURN ..... 0388
END0389
FINIS ..... 0390
XECUTER. ..... 0391
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & 5 & & & & & & \\
\hline & 1 & QJ & 1 & \(1=2.64762775 E-02^{-}\) & 4 & 1 & OJ（＂52 & \()=3.7976429\) づE－02 \\
\hline & 2 & OJ & 2 & \()=3.02020831 \mathrm{E}-02\) & 4 & 2 & QJ（ 53 & \()=3.03224061 E-02\) \\
\hline & 3 & QJ & 3 & \()=1.72436823 E-02\) & 4 & 3 & QJ（ 54 & \()=1.16230913 E-02\) \\
\hline & 4 & QJ & 4 & \()=6.68152510 E-03\) & 4 & 4 & QJ（ 55 & \()=2.87808733 E-03\) \\
\hline & 5 & QJ & 5 & \()=2.02525670 E-03\) & 4 & 5 & QJ（ 56 & \()=5.26888829 E-04\) \\
\hline & 6 & QJ & 6 & \()=5.29756823 E-04\) & 4 & 6 & QJ（ 57 & \()=7.84720454 \mathrm{~F}-05\) \\
\hline & 7 & QJ & 7 & \()=1.30002033 \mathrm{E}-04\) & 4 & 7 & QJ（ 58 & \()=1.04516559 E-05\) \\
\hline & 8 & QJ & 8 & \(i=3.22530060 E-05\) & 4 & 8 & QJ（ 59 & \()=1.39145026 E-06\) \\
\hline & 9 & QJ & 9 & \()=8.58857000 \mathrm{E}-06\) & 4 & 9 & QJ 60 & \()=2.08960624 \mathrm{~F}-07\) \\
\hline & 10 & QJ & 10 & \()=2.86285667 E-06\) & 4 & 10 & QJ（ 61 & \()=4.35334634 E-08\) \\
\hline & 11 & QJ & 11 & \()=8.34999861 E-07\) & 4 & 11 & QJ（ 62 & \()=7.25557723 E-09\) \\
\hline & 12 & QJ & 12 & \(1=2.08749965 E-07\) & 4 & 12 & QJ（ 63 & \()=9.06947154 E-10\) \\
\hline & 13 & QJ & 13 & \()=4.34895761 E-08\) & 4 & 13 & QJ（ 64 & \()=7.55789295 \mathrm{E}-11\) \\
\hline & 14 & QJ & 14 & \()=7.24826268 \mathrm{E}-09\) & 4 & 14 & QJ（ 65 & \()=3.14912206 E-12\) \\
\hline & 15 & QJ & 15 & \()=9.06032836 \mathrm{E}-10\) & 4 & 15 & QJ（ 66 & \()=0\) \\
\hline & 16 & QJ & & \()=7.55027363 E-11\) & 4 & 16 & QJ（ 67 & \()=0\) \\
\hline & 17 & QJ & 17 & \()=3.14594735 \mathrm{E}-12\) & 4 & 17 & QJ（ 68 & \()=0\) \\
\hline & 1 & QJ & 18 & \()=3.02519433 E-02\) & 5 & 1 & QJ（ 69 & \()=4.91642833 E-01\) \\
\hline & 2 & OJ（ & 19 & \()=3.07381552 \mathrm{E}-02\) & 5 & 2 & QJ（ 70 & \()=1.43718127 E-01\) \\
\hline & 3 & QJ & 20 & \(1)=1.54385405 \mathrm{E}-02\) & 5 & 3 & QJ（ 71 & \()=2.69531853 E-02\) \\
\hline & 4 & QJ & 21 & \()=5.18865107 E-03\) & 5 & 4 & QJ 72 & \()=3.78709962 E-03\) \\
\hline & 5 & QJ & 22 & \()=1.34374437 E-03\) & 5 & 5 & QJ（ 73 & \()=4.23732653 E-04\) \\
\hline & 6 & QJ & 23 & \()=2.96164302 E-04\) & 5 & 6 & QJ（ 74 & \()=3.99381550 E-05\) \\
\hline & 7 & OJ & 24 & \()=6.07227021 \mathrm{E}-0\) 万 & 5 & 7 & QJ（ 75 & \()=3.41914062 E-06\) \\
\hline & 8 & QJ（ & 25 & \()=1.26203649 E-05\) & 5 & 8 & QJ（ 76 & \()=2.98561135 E-07\) \\
\hline & 9 & QJ & 26 & \(1=2.86289503 E-06\) & 5 & 9 & QJ（ 77 & \()=3.11088104 E-08\) \\
\hline & 10 & QJ（ & 27 & \()=8.35011051 \mathrm{E}-07\) & 5 & 10 & QJ（ 78 & \()=4.9511475 j E-09\) \\
\hline & 11 & QJ & 28 & \()=2.08752763 E-07\) & 5 & 11 & QJ 79 & \()=5.92108046 E-10\) \\
\hline & 12 & QJ（ & 29 & \()=4.34901589 E-08\) & 5 & 12 & QJ（ 80 & \()=4.72886874 E-11\) \\
\hline & 13 & QJ & 30 & \()=7.24835981 E-09\) & 5 & 13 & QJ（ 81 & \()=1.89139810 E-12\) \\
\hline & 14 & QJ & 31 & \()=9.06044977 E-10\) & 5 & 14 & QJ（ 82 & \()=0\) \\
\hline 2 & 15 & QJ & 32 & \()=7.55037481 \mathrm{E}-11\) & 5 & 15 & QJ（ 83 & \()=0\) \\
\hline 2 & 16 & QJ & 33 & \()=3.14598950 E-12\) & 5 & 16 & QJ（ 84 & \()=0\) \\
\hline & 17 & QJ & 34 & \()=0\) & 5 & 17 & QJ 85 & ＇） \\
\hline 3 & 1 & QJ & 35 & \()=3.40989043 E-02\) & 6 & 1 & QJ（ 86 & \(1=0\) \\
\hline 3 & 2 & QJ（ & 36 & \()=3.07597531 \mathrm{~F}-02\) & 6 & 2 & QJ（ 87 & \()=0\) \\
\hline 3 & 3 & QJ（ & 37 & \()=1.35265107 \mathrm{E}-02\) & 6 & 3 & QJ（ 88 & \(1=\) ． 0 \\
\hline 3 & 4 & QJ & 38 & \()=3.91531781 E-03\) & 6 & 4 & QJ（ 89 & \()=0\) \\
\hline 3 & 5 & QJ & & \()=8.57092801 E-04\) & 6 & 5 & QJ（ 90 & \()=0\) \\
\hline 3 & 6 & QJ & 40 & \()=1.56625190 E-04\) & 6 & 6 & OJ（ 91 & \()=0\) \\
\hline 3 & 7 & QJ & 41 & \()=2.62271034 E-05\) & 6 & 7 & QJ（ 92 & \()=0\) \\
\hline 3 & 8 & QJ & 42 & \()=4.44105168 \mathrm{E}-06\) & 6 & 8 & QJ（ 93 & \()=0\) \\
\hline 3 & 9 & QJ & 43 & \()=8.3512595\) 5E－07 & 6 & 9 & QJ（ 94 & \()=0\) \\
\hline 3 & 10 & QJ（ & 44 & \()=2.08781489 E-07\) & 6 & 10 & QJ（ 95 & \()=0\) \\
\hline 3 & 11 & QJ & 45 & \()=4.3496143\) JE－08 & 6 & 11 & QJ（ 96 & \()=0\) \\
\hline 3 & 12 & QJ & 46 & \()=7.2493572 う E-09\) & 6 & 12 & QJ（ 97 & \()=0\) \\
\hline 3 & 13 & QJ & 47 & \()=9.06169656 \mathrm{E}-10\) & 6 & 13 & QJ（ 98 & \()=0\) \\
\hline 3 & 14 & QJ & 48 & \()=7.55141380 E-11\) & 6 & 14 & QJ（ 99 & \()=0\) \\
\hline 3 & 15 & QJ & 49 & \(i=3.14642242 E-12\) & 6 & 15 & QJ（100 & \()=0\) \\
\hline 3 & 16 & QJ & 50 & \()=0\) & 6 & 16 & QJ（101 & \()=0\) \\
\hline 3 & 17 & QJ & 51. & ）\(=\) ． 0 & 6 & 17 & QJ（102 & \()=0\) \\
\hline
\end{tabular}
```

 7 1 QJ(103)=
 0
 7 2 0J(104)= 0
 7 3 QJ(105)= 0
 7 4 UJ(106)= 0
 7 5 QJ(107)= 0
 7 60J(108)=.0
 7 70J(109)= 0
 7 80J(110)= 0
 7 9 0J(1111): 0
 70 0J(112)= 0
 711QJ(113)= 0
 712 OJ(114)= 0}
 7 13 0J(115)= 0
 740J(116)= 0
 7150J(117)= 0
 7 16 OJ(118)= 0
 717QJ(119)= 0
 QSUM=1.000000000E 00
EAN A/C FLYING =3.1666E 00
GRAPH TITLED
E(A/C)=3.17E+0OSPOTS = 8.00E+00 N NECIOK N N N = 1.60E+01

```

\section*{APPENDIX IV}

\section*{SAMPLE RESULTS}

The following pages present the values of the elements of the probability distribution vector ( \(Q \mathrm{~J}\) ) and its graphical plot for five consecutive iterations, i.e., \(Q \times P^{n}\) for \(n=1,2, \ldots, 5\). The inputs are those shown on the first page of Appendix III between statement No. 30 and No. 31. The printouts of the transition matrices and their computational elements are omitted. The plot was made using the DRAW subroutine in the U.S. Naval Postgraduate School computer facility library. Each vector printout contains the values of all 119 states possible ( \(7 \times 17\) ) and is headed by the past value of \(A+1\) and the next value of \(A+1\). The two indices preceding each element represent \(\beta+1\) and \(j+1\), in the notation of section 3. For example, in the first row on the next page, the "l 1 " indicates that the probability of being in state \((0,0)\) after one iteration is \(\doteq .026\), where the value of \(A\) is 4 over the first iteration. Each graph is labeled with the expected value of a/c flying, the number of maintenance spots available, the vector number (T), total number of a/c available (N), and the desired number of a/c on station (A). The "E" notation indicates the power of 10 to multiply by. This sample run demonstrates the loss in total \(a / c\) and variable \(a / c\) on station.
\(\square\)
\begin{tabular}{|c|c|c|c|c|}
\hline & & 5 & & \\
\hline 1 & 1 & QJ & 1 & \()=9.12184624 E-06\) \\
\hline 1 & 2 & QJ & 2 & \()=7.94491028 E-06\) \\
\hline 1 & 3 & QJ & 3 & \()=3.41380533 E-06\) \\
\hline 1 & 4 & QJ & 4 & \()=9.83913729 E-07\) \\
\hline 1 & 5 & QJ & 5 & \()=2.20530359 E-07\) \\
\hline 1 & 6 & QJ & 6 & \()=4.28567319 E-08\) \\
\hline 1 & 7 & QJ & 7 & \()=7.97994342 E-09\) \\
\hline 1 & 8 & QJ & 8 & \()=1.56348438 \mathrm{E}-09\) \\
\hline 1 & 9 & QJ & 9 & \()=3.46529220 \mathrm{E}-10\) \\
\hline 1 & 10 & QJ & 10 & \()=1.01221242 \mathrm{E}-10\) \\
\hline 1 & 11 & QJ & 11 & \()=2.58173003 E-11\) \\
\hline 1 & 12 & QJ & 12 & \()=5: 63385201 E-12\) \\
\hline 1 & 13 & QJ & 13 & \()=1.02295616 E-12\) \\
\hline 1 & 14 & QJ & 14 & \()=1.48426307 E-13\) \\
\hline 1 & 15 & QJ & 15 & \()=1.61419113 E-14\) \\
\hline 1 & 16 & QJ & 16 & \()=1.17030587 E-15\) \\
\hline 1 & 17 & QJ & 17 & \()=4.24536876 E-17\) \\
\hline 2 & 1 & QJ & 18 & \()=1.69105396 E-04\) \\
\hline 2 & 2 & QJ & 19 & \()=1.31058642 E-04\) \\
\hline 2 & 3 & QJ & 20 & \()=4.93425071 E-05\) \\
\hline 2 & 4 & OJ & 21 & \()=1.22416819 E-05\) \\
\hline 2 & 5 & QJ & 22 & \()=2.31695297 E-06\) \\
\hline 2 & 6 & QJ & 23 & \()=3.73462197 E-07\) \\
\hline 2 & 7 & QJ & 24 & \()=5.70661929 E-08\) \\
\hline 2 & 8 & OJ & 25 & \()=9.22154646 E-09\) \\
\hline 2 & 9 & QJ & 26 & \()=1.72702939 E-09\) \\
\hline 2 & 10 & QJ & 27 & \()=4.41481881 E-10\) \\
\hline 2 & 11 & QJ & 28 & \()=9.65869676 E-11\) \\
\hline 2 & 12 & OJ & 29 & \()=1.75883018 E-11\) \\
\hline 2 & 13 & QJ & 30 & \()=2.56023495 E-12\) \\
\hline 2 & 14 & QJ & 31 & \()=2.79434001 E-13\) \\
\hline 2 & 15 & QJ & 32 & \()=2.03393035 E-14\) \\
\hline 2 & 16 & QJ & 33 & \()=7.41007441 E-16\) \\
\hline 2 & 17 & QJ & 34 & ) \(=\) \\
\hline 3 & 1 & QJ & 35 & \()=1.42525319 E-03\) \\
\hline 3 & 2 & QJ & 36 & \()=9.83757697 E-04\) \\
\hline 3 & 3 & QJ & 37 & \()=3.24331350 E-04\) \\
\hline 3 & 4 & QJ & 38 & \()=6.90234010 E-05\) \\
\hline 3 & 5 & QJ & 39 & \()=1.09403657 E-05\) \\
\hline 3 & 6 & QJ & 40 & \()=1.44032446 E-06\) \\
\hline 3 & 7 & QJ & 41 & \()=1.76353392 E-07\) \\
\hline 3 & 8 & QJ & 42 & \()=2.28131763 E-08\) \\
\hline 3 & 9 & QJ & 43 & \()=3.51078290 E-09\) \\
\hline 3 & 10 & QJ & 44 & \()=7.70559333 E-10\) \\
\hline 3 & 11 & QJ & 45 & \()=1.40851171 E-10\) \\
\hline 3 & 12 & QJ & 46 & \()=2.05928494 E-1.1\) \\
\hline 3 & 13 & QJ & 47 & \()=2.25869291 E-12\) \\
\hline 3 & 14 & QJ & 48 & \()=1.65302266 E-13\) \\
\hline 3 & 15 & QJ & 49 & \()=6.05799194 E-15\) \\
\hline 3 & 16 & QJ & 50 & \()=\) \\
\hline 3 & 17 & QJ & 51 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 4 & 1 & QJ 52 & \()=7.23035242 E-03\) \\
\hline 4 & 2 & QJ 53 & \()=4.45693238 E-03\) \\
\hline 4 & 3 & QJ( 54 & \()=1.28968676 E-03\) \\
\hline 4 & 4 & QJ 55 & \()=2.35500532 E-04\) \\
\hline 4 & 5 & QJ 56 & \()=3.11156232 E-05\) \\
\hline 4 & 6 & QJ 57 & \()=3.30021596 E-06\) \\
\hline 4 & 7 & QJ 58 & \()=3.15123146 E-0 \%\) \\
\hline 4 & 8 & QJ 59 & \()=3.13674353 E-08\) \\
\hline 4 & 9 & QJ 60 & \()=3.81044171 E-09\) \\
\hline 4 & 10 & QJ 61 & \()=6.98663591 E-10\) \\
\hline 4 & 11 & QJ 62 & \()=1.02568738 E-10\) \\
\hline 4 & 12 & QJ 63 & \()=1.13092255 E-11\) \\
\hline 4 & 13 & QJ( 64 & \()=8.32962386 E-13\) \\
\hline 4 & 14 & QJ 65 & \()=3.07550593 E-14\) \\
\hline 4 & 15 & QJ 66 & \()=0\) \\
\hline 4 & 16 & QJ 67 & \()=0\) \\
\hline 4 & 17 & QJ 68 & \()=0\) \\
\hline 5 & 1 & QJ 69 & \()=7.70076632 E-01\) \\
\hline 5 & 2 & QJ 70 & \()=1.88159529 E-01\) \\
\hline 5 & 3 & QJ 71 & \()=2.32480412 E-02\) \\
\hline 5 & 4 & QJ 72 & \()=1.93788734 E-03\) \\
\hline 5 & 5 & QJ 73 & \()=1.22762068 E-04\) \\
\hline 5 & 6 & QJ 74 & \()=6.39420794 E-06\) \\
\hline 5 & 7 & QJ 75 & \()=3.02738808 E-07\) \\
\hline 5 & 8 & QJ 76 & \()=1.56312395 E-08\) \\
\hline 5 & 9 & QJ 77 & \()=1.13519205 E-09\) \\
\hline 5 & 10 & QJ 78 & \()=1.50627061 E=10\) \\
\hline 5 & 11 & QJ 79 & \()=1.51200491 E-11\) \\
\hline 5 & 12 & QJ 80 & \()=1.02093434 E-12\) \\
\hline 5 & 13 & QJ 81 & \()=3.47880865 E-14\) \\
\hline 5 & 14 & QJ 82 & \()=0\) \\
\hline 5 & 15 & QJ 83 & \()=0\) \\
\hline 5 & 16 & QJ( 84 & \()=0\) \\
\hline 5 & 17 & QJ 85 & \()=0\) \\
\hline 6 & 1 & QJ( 86 & \()=0\) \\
\hline 6 & 2 & QJ( 87 & \()=0\) \\
\hline 6 & 3 & QJ( 88 & \()=0\) \\
\hline 6 & 4 & QJ 89 & \()=0\) \\
\hline 6 & 5 & OJ 90 & \()=0\) \\
\hline 6 & 6 & QJ( 91 & \()=0\) \\
\hline 6 & 7 & QJ 92 & \()=0\) \\
\hline 6 & 8 & QJ 93 & \()=0\) \\
\hline 6 & 9 & QJ 94 & \()=0\) \\
\hline 6 & 10 & QJ 95 & \()=0\) \\
\hline 6 & 11 & QJ 96 & \()=0\) \\
\hline 6 & 12 & QJ 97 & \()=0\) \\
\hline 6 & 13 & QJ 98 & \(j=0\) \\
\hline 6 & 14 & QJ 99 & \()=0\) \\
\hline 6 & 15 & QJ(100 & ) \(=0\) \\
\hline 6 & 16 & QJ(101 & \()=0\) \\
\hline 6 & 17 & QJ(102 & \()=0\) \\
\hline
\end{tabular}
```

 7 1GJ(103)=0
    ```
7 2 OJ (104) = ..... 0
73 OJ (105) = ..... 0
\(7 \quad 4\) QJ (1.06) \(=\) ..... 0
75 QJ(107) = ..... 0
76 QJ(108) = ..... 0
77 QJ(109) = ..... 0
7 8 QJ(110) = ..... 0
79 QJ(111) = ..... 0
710 QJ(112) = ..... 0
711 OJ(113) = ..... 0
712 QJ(114) = ..... 0
\(7130 J(115)=\) ..... 0
714 QJ(116) = ..... 0
715 QJ(117) = ..... 0
716 QJ(118) = ..... 0
717 QJ(119) = ..... 0
OSUM = 1.000000000E 00
EAN A/C FLYING \(=3.9799 E\) ..... 00
GRAPH TITLED
\(E(A / C)=3.98 E+00 S P O T S=8.00 E+00\)

\[
T=2.00 E+00
\]
```

$$
J \text { VS QJ VECTOR } \quad N=1.60 E+01
$$

$$
A=4.00 E+00
$$

HAS BEEN PLOTTED.

```


```

 7 1QJ(103)=5.55639840E-01
 7 2 QJ(104) =1.48858751E-01
 7 3OJ(105)=1.84227232E-02
 7 4 0J(106) =1.3779457BE-03
 7 5 QJ(107) =6.83380035E-05
 7 6 QJ(108)=2.32262953E-06
 7 7QJ(109) =5.43332378E-08
 7 8 QJ(110)=8.80653967E-10
 7 9 QJ(111) =1.1853616UE-11
 7 10 QJ(112)=3.82356527E-13
 711 QJ(113)
 12 QJ(114)= 0
 13 QJ(115)= 0
 714 QJ(116)= 0
 715QJ(117)= 0
 716QJ(118)= 0
 717QJ(119)= 0
 QSUM=1.000000000E 00
EAN A/C FLYING =5.5636E 00
gRAPH TITLED
E(A/C) =5.56E+00SPOTS = 8.00E+00 T = 3.00E+00
J VS QJ VECTOR N=1.50E+01 A=6.00E+00
HAS BEEN PLOTTED.

```

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 7 & & \(5^{\circ}\) & & & & & & \\
\hline 1 & 1 & QJ & & \()=4.37066460 E-04\) & 4 & 1 & QJ( 52 & \(1=8.03893389 \mathrm{E}-02\) \\
\hline 1 & 2 & QJ & & \()=2.66337542 E-04\) & 4 & 2 & QJ( 53 & \(1=3.58842827 E-02\) \\
\hline 1 & 3 & QJ & & \()=7.61707863 E-05\) & 4 & 3 & QJ( 54 & \()=7.2445872\) 3E-03 \\
\hline 1 & & QJ & 4 & \()=1.37453763 E-03\) & 4 & 4 & QJ( 55 & \()=8.75756513 E-04\) \\
\hline 1 & 5 & QJ & & \()=1.79617995 E-06\) & 4 & 5 & QJ( 56 & \(1=7.0964383\) JE-05 \\
\hline 1 & 6 & QJ & & \()=1.89112432 \mathrm{E}-07\) & 4 & 6 & QJ( 57 & \()=4.1275754\) jE-06 \\
\hline 1 & 7 & QJ & & \()=1.81098891 \mathrm{E}-08\) & 4 & 7 & Qu( 58 & \()=1.85478755 E-07\) \\
\hline 1 & 8 & QJ & & \()=1.84326720 E-09\) & 4 & 8 & QJ( 59 & \()=7.45697706 E-07\) \\
\hline 1 & 9 & QJ & & \()=2.33815659 \mathrm{E}-10\) & 4 & 9 & QJ 60 & \()=3.67973791 E-10\) \\
\hline 1 & 10 & QJ & & \()=4.51123736 E-11\) & 4 & 10 & QJ( 61 & \()=3.56621692 E-11\) \\
\hline 1 & 11 & -J & & \()=7.18762832 \mathrm{E}-12\) & 4 & 11 & QJ 62 & \()=2.27683580 \mathrm{E}-12\) \\
\hline 1 & 12 & QJ & & \()=9: 07642678 \mathrm{E}-13\) & 4 & 12 & QJ( 63 & \()=7.17866372 \mathrm{E}-14\) \\
\hline 1 & 13 & QJ & & \()=8.51451858 E-14\) & 4 & 13 & QJ( 64 & \()=\) \\
\hline 1 & 14 & -J & & \()=5.27326607 E-15\) & 4 & 14 & QJ( 65 & \()=\) \\
\hline 1 & 15 & QJ & 15 & \()=1.61678538 \mathrm{E}-16\) & 4 & 15 & QJ( 66 & \()=\) \\
\hline 1 & 16 & QJ & 16 & \()=0\) & 4 & 16 & QJ( 67 & \()=\) \\
\hline 1 & 17 & QJ & 17 & \()=0\) & 4 & 17 & QJ 68 & \()=\) \\
\hline 2 & 1 & QJ & 18 & \()=5.18126447 E-03\) & 5 & 1 & QJ( 69 & \()=6.25520845 E-01\) \\
\hline 2 & 2 & QJ & & \()=2.86433504 E-03\) & 5 & 2 & QJ 70 & \()=1.72496943 E-01\) \\
\hline 2 & 3 & QJ & 20 & \()=7.33497609 E-04\) & 5 & 3 & Qus 71 & \()=2.20943201 \mathrm{E}-02\) \\
\hline 2 & 4 & QJ & 21 & \()=1.16340651 \mathrm{E}-04\) & 5 & 4 & QJ 72 & \()=1.73104557 \mathrm{~F}-03\) \\
\hline 2 & 5 & QJ & & \()=1.30125431 E-05\) & 5 & 5 & QJ ( 73 & \()=9.18785067 E-05\) \\
\hline 2 & 6 & QJ ( & 23 & \()=1.13029797 E-06\) & 5 & 6 & QJ 74 & \()=3.46552930 E-06\) \\
\hline 2 & 7 & QJ & & \()=8.54466567 E-08\) & 5 & 7 & QJ ( 75 & \()=9.61462191 E-03\) \\
\hline 2 & 8 & QJ & 25 & \()=6.65517506 E-09\) & 5 & 8 & QJ 76 & \()=2.13537750 E-09\) \\
\hline 2 & 9 & Qus & & \()=6.57969504 E-10\) & 5 & 9 & QJ( 77 & \(1=5.31168734 E-11\) \\
\hline 2 & 10 & QJ & & \()=1.05656138 \mathrm{E}-10\) & 5 & 10 & QJ( 78 & \()=3.22108252 E-12\) \\
\hline 2 & 11 & QJ & 28 & \()=1.34342964 E-11\) & 5 & 11 & QJ 79 & \()=9.66869152 E-14\) \\
\hline 2 & 12 & QJ & & \()=1.26766173 E-12\) & 5 & 12 & QJ 80 & \()=\) \\
\hline 2 & 13 & Qul & 30 & \()=7.8882995\) UE-14 & 5 & 13 & QJ( 81 & \(1=\) \\
\hline 2 & 14 & QJ & 31 & \()=2.42720088 E-15\) & 5 & 14 & QJ ( 82 & ) \(=\) \\
\hline 2 & 15 & QJ & 32 & \()=0\) & 5 & 15 & QJ( 83 & ) \(=\) \\
\hline 2 & 16 & QJ & 33 & \()=0\) & 5 & 16 & QJ 84 & j \(=\) \\
\hline 2 & 17 & QJ & 34 & \()=0\) & 5 & 17 & QJ( 85 & )= \\
\hline 3 & 1 & QJ & 35 & \()=2.69210521 E-02\) & 6 & 1 & QJ( 86 & )= \\
\hline 3 & 2 & QJ & 36 & \()=1.34302284 E-02\) & 6 & 2 & QJ( 87 & )= \\
\hline 3 & 3 & QJ & 37 & \()=3.06604116 \mathrm{E}-03\) & 6 & 3 & QJ( 88 & ) \(=\) \\
\hline 3 & 4 & QJ & 38 & \(1=4.26067113 E-04\) & 6 & 4 & QJ( 89 & \()=\) \\
\hline 3 & 5 & QJ & 39 & ) \(=4.06841633 E-05\) & 6 & 5 & QJ( 90 & ) \(=\) \\
\hline 3 & 6 & QJ & 40 & \()=2.90134684 E-06\) & 6 & 6 & QJ( 91 & )= \\
\hline 3 & 7 & QJ & 41 & \(1=1.70443704 \mathrm{E}-07\) & 6 & 7 & QJ( 92 & \\
\hline 3 & 8 & QJ & 42 & \(1=9.7665159 \supset E-09\) & 6 & 8 & QJ( 93 & \\
\hline 3 & 9 & QJ & 43 & \()=7.11954817 E-10\) & 6 & 9 & QJ( 94 & )= \\
\hline 3 & 10 & QJ & 44 & \()=9.16366982 E-11\) & 6 & 10 & QJ 95 & \\
\hline 3 & 11 & QJ & 45 & \()=8.74738102 \mathrm{E}-12\) & 6 & 11 & QJ 96 & ) \(=\) \\
\hline 3 & 12 & QJ & 46 & \()=5.5023741 ว \mathrm{E}-13\) & 6 & 12 & QJ 97 & )= \\
\hline 3 & 13 & QJ & 47 & \()=1.70994033 \mathrm{E}-14\) & 6 & 13 & QJ( 98 & \\
\hline 3 & 14 & QJ & 48 & \()=0\) & 6 & 14 & QJ( 99 & \()=\) \\
\hline 3 & 15 & QJ & 49 & \(1=0\) & 6 & 15 & QJ(100 & ) \(=\) \\
\hline 3 & 16 & QJ & 50 & \()=0\) & 6 & 16 & (JJ(101 & ) \(=\) \\
\hline 3 & 17 & はJ & 51 & \()=0\) & 6 & 17 & QJ(102 & \()=\) \\
\hline
\end{tabular}
```

 7 1 QJ(103)=
 7 2 QJ(104)=
 7 30J(105)=
 7 4 QJ(106)=
 7 50J(107)=
 7 6 OJ(108)=
 7 OJ(109)=
 7 8QJ(110)=
 7 9 QJ(111)=
 7 10 QJ(112)=
 7 11 0J(113)=
 7 120J(114)=
 7130J(115)= 0
 740J(116)= 0
 715 QJ(117)= 0
 716 QJ(118)= 0
 7 17 0J(119)= 0
 QSUM=1.000000000E 00
EAN A/C FLYING =3.75%8E 00

```
```

GRAPH TITlED

```
GRAPH TITlED
    E(A/C)=3.76E+00SPOTS = 8.00E+00. T=4.00E+00
    E(A/C)=3.76E+00SPOTS = 8.00E+00. T=4.00E+00
    J VS OJ VECTOK N=1.40E+01 A = 4.00E+00
    J VS OJ VECTOK N=1.40E+01 A = 4.00E+00
HAS BEEN PLOTTED.
```

$$
\begin{aligned}
& \text {. } 8 \\
& 805 \\
& \stackrel{y}{0} \\
& \stackrel{\otimes}{8} \\
& X-\text { SCALE }=2.00 E+01 \text { UNITS } / I N C H_{n} \\
& Y \text {-SCALE }=1.00 E-01 \text { LImITS } / \text { INCH. } \\
& E(A / C):=3.76 E+00 S P O T S=8.00 E+00 \quad T=4.00 E- \\
& \text { U US QU VECTOR } \\
& N=1.4 \theta E+01 \\
& A=4.00
\end{aligned}
$$

| | | 7 | | |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | QJ | 1 | $1=7.1552099$－ 15 |
| 1 | 2 | QJ | 2 | $)=4.87189674 E-05$ |
| 1 | 3 | QJ | 3 | $)=1.57753676 E-05$ |
| 1 | 4 | OJく | 4 | $)=3.27727099 E-06$ |
| 1 | 5 | QJ | 5 | $l=5.02868635 \mathrm{E}-07$ |
| 1 | 6 | OJ | 6 | $)=6.34199800 E-08$ |
| 1 | 7 | QJ | 7 | $)=7.35880233 E-09$ |
| 1 | 8 | OJ | 8 | $)=8.96925196 E-10$ |
| 1 | 9 | QJ | 9 | $)=1.30710966 E-10$ |
| 1 | 10 | QJ | 10 | $)=2.75401174 E-11$ |
| 1 | 11 | －J | 11 | $1=4.80498022 E-12$ |
| 1 | 12 | QJ | 12 | $j=6.66122816 E-13$ |
| 1 | 13 | UJ | 13 | $J=6.87539584 E-14$ |
| 1 | 14 | QJ | 14 | $)=4.6937713$ SE－15 |
| 1 | 15 | いJ | 15 | $)=1.58863224 E-15$ |
| 1 | 16 | QJ | 16 | $)=0$ |
| 1 | 17 | －J | 17 | $1=0$ |
| 2 | 1 | QJ | 18 | $)=1.0877161$ つE－03 |
| 2 | 2 | QJ | 19 | $)=6.60751603 E-04$ |
| 2 | 3 | QJ | 20 | $)=1.87506066 E-04$ |
| 2 | 4 | QJ | 21 | $)=3.33393973 E-05$ |
| 2 | 5 | QJ | 22 | $)=4.24508484 E-06$ |
| 2 | 6 | QJ | 23 | $)=4.27752034 E-07$ |
| 2 | 7 | QJ | 24 | $)=3.81603116 E-08$ |
| 2 | 8 | QJ | 25 | $)=3.50828898 \mathrm{E}-09$ |
| 2 | 9 | QJ | 26 | $)=3.95927530 E-10$ |
| 2 | 10 | QJ | 27 | $)=6.89194802 \mathrm{E}-11$ |
| 2 | 11 | QJ | 28 | $j=9.53886847 E-12$ |
| 2 | 12 | QJ | 29 | $)=9.83824310 E-13$ |
| 2 | 13 | QJ | 30 | $)=6.71883385 E-14$ |
| 2 | 14 | OJ | 31 | $)=2.27773386 E-15$ |
| 2 | 15 | QJ | 32 | $)=0$ |
| 2 | 16 | Q J | 33 | $)=0$ |
| 2 | 17 | OJ | 34 | $1=0$ |
| 3 | 1 | QJ | 35 | $)=7.37121582 \mathrm{E}-03$ |
| 3 | 2 | QJ | 36 | $)=4.01163961 E-03$ |
| 3 | 3 | OJ | 37 | $)=1.00338550 \mathrm{E}-03$ |
| 3 | 4 | QJ | 38 | $)=1.53687580 \mathrm{E}-04$ |
| 3 | 5 | Q J | 39 | $)=1.63163199 E-05$ |
| 3 | 6 | QJ | 40 | $)=1.3093263$ SE－06 |
| 3 | 7 | QJ | 41 | $)=8.77478713 E-08$ |
| 3 | 8 | QJi | 42 | $)=5.76387626 E-09$ |
| 3 | 9 | Q J | 43 | $)=4.69636023 E-10$ |
| 3 | 10 | QJ | 44 | $)=6.43465918 \mathrm{E}-11$ |
| 3 | 11 | QJ | 45 | $)=6.56029037 E-12$ |
| 3 | 12 | OJく | 46 | $)=4.42292681 E-13$ |
| 3 | 13 | 0J | 47 | $)=1.47863511 E-14$ |
| 3 | 14 | QJ | 48 | $)=0$ |
| 3 | 15 | QJ | 49 | $)=0$ |
| 3 | 16 | QJ | 50 | $1=0$ |
| 3 | 17 | QJ | 51 | ）$=$ |

```
        7 Q QJ(103)=4.84130317E-01
        7 2 QJ(104 )=1.18774563E-01
        7 3 QJ(105)=1.31776649E-02
        7 4 OJ(106)=8.59940961E-04
        7 O QJ(107)=3.59275288E-05
        7 6 QJ(108)=9.79278393E-07
        7 O QJ(109 )=1.69313196E-08
        7 8QJ(110) =1.69139063E-10
        7 9 OJ(111 ) = 7.45214538E-13
    7 10 0J(112 )
    7 11 QJ(113 )=.
    7 12 0J(114 )=
    7130J(115)=
    7 14 QJ(116)=
    7 15 QJ(117 )=
    7 16 (J)(118) =
    7 17 QJ(119)=
QSUM=1.000000000E 00
EAN A/C FLYING =5.3577E 00
graph Titled
    E(A/C) =5.36E+00SPOTS = 8.00E+00 T=5.00E+00
    JVS OJ VECIOR N=1.40E+01 A = 6.00E+00
HAS BEEN PLOTTED.
```

No. Copies

1. Defense Documentation Center 20Cameron StationAlexandria, Virginia 22314
2. Library 2
U.S. Naval Postgraduate School Monterey, California 93940
3. Professor R. R. Read 2
P. O. Box 6191
Carmel, California 93921
4. Lieutenant Commander George M. Lanman 3
17 West Kirke Street Chevy Chase 15, Maryland
(Security cleociflcetlon of tltto, body of ebetrect and indexing mnotetlon muet bo entered when the overell report la clesolfied)
5. ORIGINATING ACTIVITY (Corporate euthor)
U. S. Naval Postgraduate School

Monterey, California

2b. GROUP
3. REPONT TITLE

AN ADAPTATION OF A MARKOV CHAIN MODEL FOR ANTISUBMARINE WARFARE CARRIER AIRCRAFT

4. DESCRIPTIVE NOTES (Type of report and Incluoive datea)

Master's Thesis
5. AUTHOR(S) (Laet name, ilret name, initial)

Lanman, George M., Lieutenant Commander, U.S. Navy

| 6. REPORT DATE May, 1966 | $\begin{aligned} & \text { 7a. TOTAL NO. OF PAGES } \\ & 65 \end{aligned}$ | $\begin{aligned} & \text { 7b. NO. OF REFS } \\ & 5 \end{aligned}$ |
| :---: | :---: | :---: |
| 1a. CONTRACT OR GRANT NO. | 29. ORISINATOR'S REPORT NUMEER(S) | |
| b. PROJECT NO. | | |
| c. | 9b. OTHER REPORT NO(S) (A ny other numbere thet mey be aeal oned hil report) | |
| d. | | |

10. AVAILABILITY/LIMITATION NOTICES

This document has been approved for pubilc Frelease and sale; its distribution is unlimitedo
11. SUPPLEMENTARY NOTES
12. SPONSORING MILITARY ACTIVITY
13. ABSTRACT

It is the purpose of this paper to develop a useful mathematical model of ASW aircraft availability. The increasing emphasis of systems studies dictates the use of accurate and representative models of the ASW systems. At present, many studies are using essentially the same models developed during World War II. This paper is an attempt to make use of advanced theory in a more powerful and flexible model and to make the use of the model practical and verifiable.

The writer adapted the time homogeneous bivariate model as developed by F. C. Collins. This is a discrete time Markov process with a stochastic matrix of transition probabilities wherein the maintenance process is modeled as a pulsed input multiple server queue.

The model was programmed in FORTRAN 63 on the CDC 1604 and then modified to allow for variability in the input parameters. Other modifications include an increase in the size of the model to accommodats a 16-aircraft squadron, the largest ASW squadron at present, and an explicit form solution to the maintenance queueing equations.

Security Classification

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate athor) issuing the report.
2a. REPORT SECURTT CLASSIFICATION: Enter the overall security classificstion of the report. Indicate whether "Restricted Data" is included Marking is to be in accordance with appropriste security regulations.
2b. GROUP: Automatic downgrading is specified in DoD Directive 5200. 10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 'as authorized.
2. REPORT TITLE: Enter the complete report title in all copital letters. Titles in all cases should be unclassified. U a me:aningful title cannot be selected without classifice tion, show title classification in all capital in parenthesis immediately following the title.
3. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, sumanary, annual, or final. Give the inclusive dates when a secific reporting period te covered.
4. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If rilitery, show rank and branch of service. The name of the principal ailthor is an sbsolute minimum requirement.
5. REPORT DATE: Enter the date of the report as day, month, year; or month, year. If more then one date appeers on the report, use date of publication.
7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i. e., enter the number of pages containing information
7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.
8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.
$8 b, 8 c, 88 d$. PROJECT NUMBER: Enter the appropriete military department identification, auch as project number, subproject number, ystem numbers, task number, etc.
9a. ORIGINATOR'S REPORT NUMBER(S): Enter the offlcial report number by which the document will be identified and controlled by the originating mctivity. This number must be unique to this report.
9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsos), also enter this number(s).
6. AVAKLABILITY / LIMITATION NOTICES: Enter any IImItations on further dissemination of the report, other than those
imposed by security classification, using atanderd statement such as:
(1) "Qualified requestert may obtein copies of this report from DDC."
(2) "Foreign announcoment and disegaination of thic report by DDC is not authorized."
(3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users ohal request throuch
(4) "U. S. milltary agencies may obtain copies of this seport directly from DDC. Other qualified users shall request through
(5) "All dietribution of this report is controlled Qualified DDC usere shall request through

If the report hat been furnthed to the Office af Techeleal Services, Department of Commerce, for enle to the public, Iwilf cete this fact end enter the price, if known

11. SUPPLEMENTARY NOTE4: Use for additional explanctory notes.

12. SPONSORIMG MILTTARY ACXYVIT: Ent er the same of the departmentel project office of Iaboratory aponeoring (bay in for) the seacearch and developmeat include edtrose
13. ABSTRACT: Enter an abstrict diving a blef and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the tsolanical report. If additional space is required, a continuation sheet ahals be attached.

It is highly desirable that the abstract of classified roporta be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abetrect. However, the sucested length is from 150 to 225 words.
14. KEY WORDS: Koy worde aro tochnicelly meeningful terme or short phrases that characterlss a report and may bo used as index entries for cataloging the ropert. Rey words must be selected so that no security clessification is required. Identiflers, such as equipment model desipnetion, trade name, military project code name, seographic location, may be uned as key werds but will be followed by an ladication of technicsl context. The assigament of links, rales, end woights is optional.

